
.

.

DISCRETE RECURRENT NEURAL NETWORKS
AS PUSHDOWN AUTOMATA

Zheng Zeng~, Rodney M. Goodman~ and Padhraic Smyth~~

t])epart,ment of Electrical Engineering, 116-81
California Institute of l’ethnology
Pasadena, CA 91125, U.S.A.

ttJet Propulsion Laboratory, 238-420
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA91109, U.S.A.

in this paper we describe a new discrete rccurrcnt neural network model with discrete
external stacks for learning context-free grammars (or pushdown automata). Conventional
analog recurrent networks tend to have stability problems when presented with input sirings
which are longer than those used for training: the network’s internal states become merged
and the string can not be correctly parsed. However, the discrete recurrent structure forms
a stable representation during learning by using isolated discrete points as its internal rep-
resentation of states for the automata. Hence, once successfully trained, the network is
perfectly stable on input strings of arbitrary length. For training such discrete networks a
novel “pseudo-gradient” learning rule is used, Experimental results demonstrate the ability
of the discrete network to learn context-free grammars in a stable manner. ‘1’hc discrete
network model results in the advantages of a stable network, a clear understanding of the
operation of the stack, and a structure which is easily irnplcmcntable in hardware.

1. INTRODUCTION

We consider the problem of learning context-free grammars from labeled examples using
recurrent networks. Analog recurrent networks have recently been shown to have the ability
to learn context-free grammars by using an external “continuous stack” [1], We have shown
in our previous research [3] that analog recurrent networks have difficulty in forming stable
internal state representations for grammar learning, i.e., after successful training, as the
lengths of the test strings get longer and longer, the network tends to “forget” which state
it is in and performance deteriorates significantly.

‘1’hc problcm is inherent to the internal representation of any network which uscs analog
values to represent states, while the states in the underlying state machine are actually
discrete.

TO achieve stability for long strings, wc propose a discrete recurrent network structure
which uses discretization in both its feedback links and in the operation of an external
discrete stack,

2
,

2. NETWORK ARCHITECTURE.

r - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1
t--------------- - i - - - - - - - - - - - - - l i
1 ,- *------- ----- +--- .- I

T- control

input t ’

Figure 1. A discretized second-order network with an
h: is the indicator unit: ha >0.5 for legal sirings and

A second-order discrete recurrent network with an

external stack. The thick circled unit
hj <0.5 for illegal strings.

external stack for the case of binary
input and stack alphabets is shown in Fig. 1. ‘1’he primary differences between this structure
and the one proposed in [1] are that wc have (a) a discrete stack and (b) discrctizcd units.
The network is represented as four separate networks with shared hidden units, controlled by
2 gating switches: the input symbol enables or disables netO” and netl, and the top-of-stack
symbol enables or disables net2 and net3. The common hidden unit values are discretized
and copied back to all 4 “subnetworks” after each time step. The hidden unit activation
function is the standard sigmoid function, j(z) =: ~. The discretization function is
defined to be:

{

0.8 if x 20.5
(1)~(z) = ().2 if x < 0 . 5 .

Hidden unit ho is chosen to be a special indicator unit whose activation should bc greater
than 0.5 at the end of a legal string, or smaller than 0.5 otherwise. The last hidden unit,
in this case h2, is designated to bc the ‘taction” unit, whose activation decides what stack
action to take. The network weights are initialized randomly with a uniform distribution
between -1 and 1.

As in [1], we restrict the scope of context-free grammars as follows; the alphabet of the
stack symbol is set to be the same as the input alphabet, only the current input symbol can
be pushed onto the stack, and epsilon transitions (which can make state transitions or stack
actions without reading in a new input symbol) are not allowed.

. .

3

●

3. ERROR FUNCTIONS

Several situations can be encountered during learning, each requiring the use of a different
error function. Let ho, hl, hN be the hidden units of the network, where ho k the “in-
dicator” unit and hN is the “action” unit. Let L be the length of the current string being
processed, and dt be the depth of the stack at time step t (hence, drJ is the depth of the
stack at the end of the string).

Das et al. have suggested in [1] that learning can be sped up significantly by providing
the network with a “teacher” to give hints. Whenever a point is reached in the input string
such that the string up to that point is not a prefix of any legal strings, the teacher produces
a signal and the network is trained to have another special hidden unit, designated as the
“dead unit ,“ turn on. Our error functions are similar in general to those proposed in [1] but
there are some significant differences [4]. For exarnp]e, for the case when the string is illegal
but not a dead string, and the end of a string is reached (without any attempt to pop an
empty stack), the error function is defined to bc:

{

hlJ – dL + ~(hf)2 if hi – dTJ > 0
E= 00

otherwise,

i.e., we want either the stack to be nonempty, or the indicator unit to be off, and for both
cases, the dead unit to be oH. The dead unit should not be on for such strings because they
could be prefixes to legal strings.

A detailed description of error functions used for various cases can be found in [4]. Exper-
iments were carried out for learning both with and without hints. For the case of learning
without hints, the error functions can bc easily modified by canceling any term concerning
the “dead” unit, h l, and cases concerning the teacher signal will not be encountered.

4. THE PSEUDO-GRADIENT METHOD

To train the discretized network, we propose an approximation to gradient descent which
we call the pseudo- gradient learning rule [3], ‘l’he essence of the learning rule is that in
doing gradient descent it makes use of the gradients of a sigmoid function as heuristic hints
in place of those of the hard-limiting function, while still using the discretized values in the
feedback update paths and in the operations on the external stack,

During training, at the end of each string {z”, xl , x~’} the error is calculated according
to the definition for the appropriate case.

Update w:, the weight from unit j to unit z in netn, at the cnd of each string presentation:
w;=w;—~~, for all n,i, j. For the example case of Section 3, we have:

8J

{

a-h: &L%: —–—
- I,

au); + h:#& ifh~–dll>O
~ = ;“’; Vn, i, j,

otherwise,

5where ~ is what we call the “pseudo-gradient” with respect to w;,
$1

To get the pseudo-gradients # and ~,
*I ~1

calculated forward in time at each time step.

pseudo-gradients $$ for all i, k need to be
lJ

Initially, set: -#$ = O, for all i,j, n, k. For
*J

4

weights in the input-controlled subnetworks:

(2)

I.e., in carrying out the chain rule for the gradient we replace the real gradient ~, which
11- t-1

is zero almost everywhere, by the pseudo-gradient ~.
t)

TO obtain the term #, we use the iterative operational equation:
~J

1 ifx>O.4
-1 ifx <0.6

~ O othmwisc.

Initially, set ~ = O for all n, i,j. After each time step, update:
83

Here, in place of the gradient of the piece-wise step function 111, we still use the pseudo-
gradicnt of the action unit hjv. Although the value of the action unit does not get discretized
and copied back after each time step, its pseudo-gradient can still be calculated by utilizing
the pseudo-gradients of other hidden units. For weights in the input-controlled subnetworks:

Similar equations can be derived for weights in the top-of-stack-controlled subnetworks.
In the formulae, we have left out a term concerning the top-of-stack symbol’s dependency

on the weights. Since a simple recurrent form of this term is analytically impossible to
derive, an approximation was used in [1]. In our formula, the pseudo-gradient is itself an
approximation, further fine tuning by this term may not be necessary. Empirical results in
the next section will demonstrate that the networks can indeed perform successful learning
without this term in the formula. Thus, the coupling between the stack and the network
during learning is reflected only in the previous formula for the gradient of the stack depth.

5. EXPERIMENTAL RESULTS

We experimented with the same grammars as used in [I], i.e.,

● ‘1’hc parenthesis matching grammar.

● The postfix grammar.

● anbn,

● a m+nbmcn.

● an bncbmam,

5

Table I (a) and (b) show the detailed results for experiments with and without hints,
respectively. From the results in Table 1, it can be seen that providing the network with
hints can indeed speed up learning, or even enable the learning of the grammars in cases
where the grammar could not be learned without hints .

Table 1
Experimental results from training
(a) with hints; (b) without hints.
fixed learning parameters for each

the discrete recurrent
The training set and

net work on context-free grammars
hidden unit columns indicate the

grammar. 10 runs with different random initial weights
were carried out for each grammar except for the a“b’cb~a~ grammar in (a) and a“ & in (b),
for which only one run each was obtained. N$, the number of successful runs is the number
of runs (of the 10 possible) for which the trained network generalized perfectly for strings
of any length. The means for the epochs and total characters processed (and the standard
deviation for the epochs) were estimated only from the successful runs. NO, the number of
over-fitting runs is the number where the network over-fitted the data and did not generalize
perfectly. N., the number of non-convergent runs is the number of runs where the network
did not converge on the training data after 1000 epochs.

training set # of mean mmn #
grammar # o f hidden N. NO N. # o f CTOf of total

strings Lmaz u7~its epochs epochs characters
P a r e n t h e s i s 4 6 6 3 0 0 10 28.8 16.3 5205

Postfix 63 7 4 1 0 - 9 62.3 17.1 21131
anbn 32 6 4 2 0 - 8 127,3 4.9 16797

am+nbmcn 120 8 5 2 0 8 6 3 36.0 7560—..
anbncbmam 150 7 7 —. 1 698 –- 516520

(a)

training set # of mean mean #
grammar # o f hidden Nn No N, # o f O o f of total

strings Lmaz units epochs epochs characters
Parenthesis

—-—
180 6 3 0 0 10 12.0 10.5 11208—.

Postfix 371 7 4 4 2 4 185.8 149.0 408464—.
an bn 760 8 5 — – - 1 6 3 - - - 332136—.

(b)

As an example, Fig. 2(a) and (b) show the derived pushdown automata from the networks
after being trained on the parenthesis matching grammar and the a“b” grammar respectively.

Once the network has successfully learned the pushdown automata from the training set,
its internal states are always stable, i.e., it has 100% classification rate on unseen strings of
arbitrary length. In contrast, in [1], where a continuous stack was used, the results show
that analog recurrent networks do not always generalize perfectly.
. .

a,a,-

(.-$Ps

::?;:
).(. PP
(,), PS

- 8

),). PS

0s o

(a)

a, a, Ps b, a< PP

se:::

b,-,\ ,Opempty f-m
stack

(b)

Figure2. Extracted pushdown automata fromthe discretized network with anexternal stack
after learning (a) the parenthesis grammar without hints; (b) the grammar a“b” with hints.
Double circled means the state has an indicator uniton, SO=O.8: thus a processed string
is legal if the automaton arrives at such a state and if the stack is empty. A dead state
means the state has its dead unit on, S1 = 0.8: a processed string is illegal as soon as the
automaton arrives at such a state. A transition rule is labeled by “x,y,z”, where x stands for
the current input symbol, y stands for the top-of-stack symbol (“-” means an empty stack),
and z stands for the operation taken on the stack: “PS” means push, “PP” means pop.

6. CONCLUSION

In this paper we introduced a discrete recurrent network structure with an external stack
for the task of learning pushdown automata. The discrete structure results in the advantages
of a stable network, a clear understanding of the operation of the stack, and can be easily
implemented in hardware.

Acknowledgments
The research described in this paper was supported in part by ONR and ARPA under

grant number NOO014-92-J-1860. In addition this work was carried out in part by the Jet
Propulsion Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

REFERENCES

1.

2,

3.

4.

S. Das, C. I,. Gilts, G. Z. Sun, ‘(Using prior knowledge in an NNPDA to learn context-
frce languages,” Advances in Neural Information Processing Systems 5, S. J. Hanson,
J. D. Cowan and C. L. Giles, Eds., San Mateo, CA: Morgan Kaufmann, pp.65-72, 1993.
J. E. Hopcroft, J. D. Unman, Introduction to Automata Theory, Languages and Compu-
tation, Addison-Wesley, Reading Mass., 1979.
Z. Zeng, R. Goodman, P. Smyth, “Learning finite state machines with self-clustering
recurrent networks,” Neural Computation, Vol. 5, No. 6, pp.976-990, 1993.
Z. Zeng, R. Goodman, P. Smyth, “Discrete recurrent neural networks for grammatical
in ference,” to appear in IEEE Transactions on Neural Networks, Vol. 4, No. 6, 1993.

